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Abstract 
Artificial intelligence (AI) is having a big impact on a lot of different fields, like the legal, 

medical, military, industrial, and artistic fields. AI can manage smart factories, drive autonomous 

cars, make accurate weather forecasts, detect cancer, and be a personal assistant, among other 

things. The process of evaluating software to look for anomalous behavior is known as software 

testing. The process of software testing is arduous, time-consuming, and unpleasant. In order to 

improve quality and delivery timeliness, automation solutions have been developed to assist in 

automating certain testing process operations. Automation technologies are losing effectiveness 

over time as a result of the continuous integration and delivery (CI/CD) pipeline. Because AI can 

review code for faults and bugs faster than humans and without human interaction, the testing 

community is looking to AI to fill the void. Our goal in this research is to identify how different 

aspects of the Software Testing Life Cycle (STLC) are affected by AI technology. The study also 

seeks to identify and elucidate some of the most significant obstacles that software testers 

encounter when utilizing AI in testing. Additionally, the report makes some significant 

predictions about how AI will advance software testing in the future. 
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1. Introduction 
With recent progress in automated and digitized data acquisition, efficient machine learning and 

deep learning algorithms, and high computing infrastructure, Artificial Intelligence (AI) applications 

are now inflating their foot- print in areas that were previously expected to be only the domain of 

human experts. The AI-powered tools have al- ready made significant progress in various fields, 

includ- ing finance, law, medicine, and even arts.  In many re- spects, AI is radically surpassing 

human intelligence and is approaching the domain of human creativity and em- pathy.   Examples 

include AI’s spectacular successes in winning Go [1], chess [2], and other board games with 

humans, and in surpassing humans on fully defined world puzzles. In the domain of NLP, we 

witnessed how a pow- erful language model like GPT3 wrote news articles that people found hard to 

distinguish from prose written by hu- mans [3]. We also witnessed DeepMind’s protein-folding AI 

solving a 50-year-old grand challenge of biology [4]. Over the past few decades, there has been 

substantial sig- nificant growth in the software industry driven by the re- cent advances in AI. 

Artificial Intelligence is gradually changing the landscape of software engineering in general [5] and 

software testing in particular [6] both in research and industry as well. 

In the last two decades, AI has been found to have made a considerable impact on the way we are 

approach- ing software testing. Since most of the organizations have turned to automation testing to 

bridge the gap that exists between the growing complexity of deliverable software and the 

contraction of the delivery cycle yet the gap is stretching at an alarming pace bringing us closer to a 

tip- ping point wherein test automation too will fail for us to deliver quality software on time.  AI 

can help us fill this gap and help us streamline our speeding software delivery process, thereby saving 

a significant amount of time and effort (and likely a sizeable amount of money too). So far, the use of 

AI has been very successful in the automation of software testing in some areas. Still, much research 
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re- mains to be carried out on analyzing, understanding and improving the tested software artefacts 

in order to learn more and develop better techniques to enable modern soft ware systems. 

Our goal in this study is to identify software testing ac- tivities where AI has made a significant 

impact and greatly enhanced the process within each activity. We also iden- tify AI techniques that 

have been mostly applied to the process of software testing. Further, we convey the prob- lems 

identified by the study that the testing community is facing while implementing AI-based solutions to 

the test- ing problems. We also provide some key areas where AI can potentially help the testing 

community. 

2. Background 
Artificial Intelligence Overview: The term artificial intelligence was coined by John McCarthy 

in 1955 at a conference organized by the Dartmouth Conference. The term was used to refer to all 

”programming systems in which the machine is simulating some intelligent human behaviour”. 

According to John McCarthy, it is “The sci- ence and engineering of making intelligent machines, 

es- pecially intelligent computer programs” [7]. Here we dis- cuss the main branches of AI that have 

been mostly ap- plied to software testing. 

Artificial Neural Network : Designing artificial intel- ligence based on a biological neural 

network gives birth to an artificial neural network (ANN) [8]. Like the biological neural network, the 

ANN is an interconnection of nodes, analogous to neurons. Each neural network has three crit- ical 

components: node character, network topology, and learning rules. Node character determines how 

signals are processed by the node. Network topology determines the ways nodes are organized and 

connected. Learning rules automatically determine how the weights are initialized and adjusted 

using weight adjustment schemes. This type of network becomes a computational device, which is 

able to learn through training, consequently improving its per- formance. 

AI planning : Research on AI planning can be traced back to the logic theorist program designed by 

Newell and Simon in the 1960s [9]. The task of AI planning is to find a series of effective actions in 

a given planning domain, to ensure that the initial state in the planning problem can be successfully 

transferred to the goal state after applying the actions [10][11]. 

Robotics : Robotics is a branch of AI, that comprises Electrical Engineering, Mechanical 

Engineering, and Com- puter Science for the design, construction, and applica- tion of robots. An 

Intelligent Robot is a physically situ- ated Intelligent Agent containing five major components: 

textiteffectors, perception, control, communications, and power [12]. Effectors are the peripherals of 

the robot that help it to move and interact with the environment.  Per- ception is a set of sensors 

that provide the robot with the capability to sense the environment. Control is analogous to the 

central nervous system and is capable of computa- tions that allow the robot to maximize its 

chances of suc- cess. Communication is how a robot interacts with other agents like humans use 

language, gestures, and proxemics to interact with each other. 

Machine Learning : Machine learning can be broadly defined as computational methods using 

experience to im- prove performance or to make accurate predictions [13]. Here, experience refers 

to the past information available to the learner, which typically takes the form of electronic data 

collected and made available for analysis. This data could be in the form of digitized human-

labelled training sets, or other types of information obtained via interaction with the environment 

[13] [14]. 

Natural Language Processing (NLP) : Natural Lan- guage Processing (NLP) refers to the AI 

method of com- municating with an intelligent system using a natural lan- guage such as English. 

Processing of Natural Language is required when we want an intelligent system to perform as per 

our instructions, when we want to hear decisions from a dialogue-based clinical expert system, etc. 

Fuzzy Logic :  Fuzzy logic(FL) is a method of rea- soning that resembles human reasoning. 

The approach of FL imitates the way of decision-making in humans that in- volves all intermediate 

possibilities between digital values YES and NO. FL is based on the idea that there is no sharp 

distinction between the two extremes. FL is a method of reasoning that is applied to make 
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decisions by means of a number of rules which are combined with each other to produce a result. 

The rules are fuzzy sets, which are used as a basis for decision-making. 

Expert Systems : Expert systems are computer appli- cations developed to solve complex problems 

in a partic- ular domain, at the level of extraordinary human intelli- gence and expertise. The 

common features of expert sys- tems can be summarized as follows. 

Rules that define the specific problem are formal- ized in the form of computer procedures in the 

pro- gramming language. 

Knowledge Base in the form of a computerized database, 
stores the problems and solutions for support in the decision-making process. 

Inference  Engine  which processes and evaluates scenarios The problems posed and solutions 

found are completely transparent to the user. In simple terms, the system func- tions as a large, 

intelligent “computerized brain”. 

Software Testing Overview: Software testing is an in- vestigation conducted to provide stakeholders 

with infor- mation about the quality of the software product or system under test (SUT). Usually, a 

software development organi- zation expends between 30% to 40% of total project effort on testing 

[15] and testing consumes more than 50% of the total cost of a project [16]. A higher-quality 

software is achieved when SUT is failure-free. A failure is detected when the SUT’s external 

behaviour is different from what is expected of the SUT according to its requirements or some other 

description of the expected behaviour [17]. 

An important element of the testing activity is the test case. Essentially, a test case specifies in 

which conditions the SUT must be executed in hopes of finding a failure. When a test case reveals 

a failure, it is considered suc- cessful (or effective) [18]. The test cases are usually de- rived from 

either the functional specification, or a design specification, or a requirements specification. A test 

case specification includes: 

• The preconditions, which describe the environment and state of the SUT before the test case is 

executed. 

• The test steps, which describe the actions that should be performed to execute the test case. 

• The expected results, which describe the expected results of the executing test case. 

• The actual results, which describe the results of the executing test case. 

There are different dimensions under which testing has been studied and implemented and these 

dimensions define the test adequacy criteria, that is, the criterion that defines what constitutes an 

adequate test [19].  A great number of such criteria have been proposed and investi- gated and 

considerable research effort has attempted to provide support for the use of one criterion or another. 

We discuss test adequacy criteria in the following sections. 

1) Testing Types:  Two main types of testing are 

• Manual Testing :  In manual testing, testers exe- cute test cases manually without the use of 

tools or scripts.  In this type of testing, the tester takes over the role of an end-user and tests the 

software to identify any unexpected behaviour or bug. 

• Automated Testing :  is a form of software testing that uses software tools to execute predefined 

tests. The software tools used for automated testing are often called test automation tools or test 

automation frameworks. It relieves the tester from the burden of executing the test cases however 

the process of planning and writing test cases in the form of test scripts still needs to be carried out 

manually. 

2) Testing Techniques:  Three main testing techniques have been identified 

Black-box Testing :  Black-box testing also known as functional testing aims to study the 

external be- haviour of software without dwelling on the internal structure of the software. 

Black-box testing is based on the inputs and the outputs of the software. 

• White-box Testing : White-box Testing also known as structural testing, on the other hand, 

creates test cases based on the SUT implementation.  Its pur- pose is to make sure that all 

structures (e.g., paths, instructions, and branches) of the SUT are exercised during the execution 

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 411



of the test suite [18]. 

• Gray-box Testing :  Gray box testing is a testing technique to test a software product or 

application with partial knowledge of the internal structure of the application. The purpose of 

grey box testing is to search and identify the defects due to improper code structure or 

improper use of applications. 

3) Testing Phases or Testing Levels:   Testing is per- formed at all levels of the software 

development lifecycle including development, release, and production.  During development unit 

testing is carried out to test basic units of software like a method or a class. After unit testing, 

the basic units combine to form components further test- ing is carried out for testing these 

components to ensure that the integration has not bought any unintended bugs and the component 

are working as per the specification. The process of testing at the component level is called In- 

tegration testing. Since different teams work on the code simultaneously and there is much reusable 

and third-party code that is incorporated in the software a further level of testing known as system 

testing has been identified to test the integrated components from these sources and there- fore to 

test the system as a whole. 

Most often due to the requirements change or addi- tion of functionality to software or due to 

maintenance the code changes, which may result in bugs crreping in the code apparently resulting 

in a failure.  To tackle this a technique called regression testing is incorporated at all levels of 

testing. Regression testing is the most cumber- some and time-consuming testing technique as it 

involves testing the SUT whenever a change is incorporated. 

Before the release, requirements testing ensures that the SUT is performing all the functions 

according to the requirements that have been pre-defined in the software requirement specification 

document.  Scenario testing is carried out before the release where scenarios of the SUT are created 

and the SUT is tested against these scenarios to look for any unintended behaviour of the SUT. 

Per- formance testing is a testing measure that evaluates the speed, responsiveness, and stability of 

a SUT under a work- load. 

At production time alpha testing is carried in the de- velopment environment wherein the 

developer acts as the user of the SUT and tries to identify any failure.  In this testing technique, the 

developer actually looks at the SUT from the perspective of the user. Beta Testing is the testing of 

SUT in the user environment. Here the user actually in- teracts with the SUT and the developer just 

watches and analyses the SUT for any failure. 

3. Impact of AI on Software Testing 
The areas in which AI techniques have proved to be useful in software testing research and 

practice can be characterized by their applications in the software testing life cycle (STLC). From 

planning to reporting, AI tech- niques have made a dominant imprint across all the stages of STLC. 

To study the impact of AI on software testing we have identified testing activities or testing facets for 

which considerable and significant research has been carried out by applying AI. These testing 

activities cover most of the STLC. 

Test Specification : At the beginning of the software test- ing life cycle, the test cases are written 

based on the fea- tures and requirements of the software. The test cases are written in a checklist 

type test specification document to ensure that every requirement of the software is tested. It 

includes the purpose of a specific test, identifies the re- quired inputs and expected results, 

provides step-by-step procedures for executing the test and outlines the pass/fail criteria for 

determining acceptance.  Below we mention the work of two seminal papers where AI has been 

ap- plied to this activity. 

Last and Friedman [21] demonstrated the potential use of Info-Fuzzy Networks (IFN) for 

automated induction of functional requirements from execution data.  The in- duced models of 

tested software were utilized for recov- ering missing and incomplete specifications, designing a 

minimal set of regression tests, and evaluating the cor- rectness of software outputs when testing 

new, potentially flawed releases of the system. 
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Briand et al.  [20] proposes a methodology that takes as inputs the test suite (a set of test cases) 

and test specifi- cations developed using the Category-Partition (CP) strat- egy.  Based on the CP 

specification, test cases are trans- formed into abstract test cases which are tuples of pairs 

(category, choice) associated with an output equivalence class (instead of raw inputs/outputs). C4.5 

is then used to learn rules that relate pairs (category, choice), modelling input properties, to output 

equivalence classes. These rules are in turn analyzed to determine potential improvements of the 

test suite (e.g., redundant test cases, need for addi- tional test cases) as well as improvements of the 

CP spec- ification (e.g., need to add a category or choices). 

Test Case Refinement: Test case refinement is a planned activity that is employed by testers to 

select the most ef- fective test cases for execution consequently reducing the testing cost.  We 

identified two AI techniques applied to this testing activity. 

Info-Fuzzy Networks (IFN) was used by Last and Kan- del [22] and Last et al.[23] who presented a 

novel ap- proach to automated reduction of combinatorial black-box tests, based on automated 

identification of input-output re- lationships from execution data of the tested program. Singh et al. 

[24] details an approach generating test cases from Z specifications for partition testing.  The 

learner receives as input the functional specification in Z. As out- put, the approach produces a 

classification tree describing high-level test cases.  Then the high-level test cases are further refined 

by generating a disjunctive normal form for them. 

Test Case Generation :    After devising a test ade- quacy criteria it is the job of testers to 

formulate a test set that satisfies the test adequacy criteria. Since for complex applications, the job of 

handcrafting test sets is an unman- ageable task most of the testers use automatic test case 

generation techniques. In the last two decades, there has been considerable growing interest in 

applying AI to auto- mate test case generation and AI has impacted this testing activity significantly. 

Test Oracle Construction :    Software testing is the process of verifying the correct behaviour of the 

SUT as per the requirements. To highlight this when a program is run with a certain input a 

mechanism is needed to distin- guish between the correct and incorrect behaviour of the 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Impact of AI on software Testing Activities 

Based on the discovered publications, seven oftware testing activities viz test case generation, 

test oracle gen- eration, test data generation, test case prioritization, test case specification, test case 

refinement, and test cost es- timation were identified as activities that have been im- proved 

significantly by the application of AI techniques. From this study, we can infer that test case 

generation or test case design activity has been considerably enhanced by the application of AI 

techniques.  Most of the recent research has been carried out around activities like test case 

generation, test case prioritization, test data gener- ation and test oracle construction. The trivial 

reason for this is that these activities are more important than other activities in the STLC. We 

skipped some software testing activities including test harness, testing technique selec- tion, test 

repairing, change proness etc.  from our study as just one or two AI-based studies have been 

carried for these activities.  [Table 1] shows a list of AI techniques that have been applied for 
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software testing activities. 

Also, the most commonly used AI techniques applied to soft testing appear to be solving the 

problem of optimiza- tion across various software testing activities.   Specifi- cally, genetic 

algorithms, ANN, and reinforcement learn- ing were among the techniques that were used across 

var- ious testing activities more frequently than others. 

4. Problems and Challenges of AI in Software Testing 

Considering the lack of industrial expertise and re- search work this section outlines some of the 

open prob- lems and challenges in the application of AI to software testing. 

Test Oracle the biggest challenge : Test oracle prob- lem is a companion of every researcher 

and practitioner working in the field of software testing. It has been there from the inception of the 

software testing conundrum and the problem is expected to stay with us for a longer dura- tion or 

maybe forever. Despite continuous attempts to mit- igate the problem of the test oracle, researchers 

have been able to solve this problem for a static subset of SUT’s. As soon as the dynamic traits of the 

SUT start to display the previous test oracle derived for the SUT starts to lose ef- fectiveness.  In 

many scenarios, even the documentation from which test oracles are generated is missing in the re- 

quirements document.  To cope with this dynamism and to dream of a documentation-free effective 

test oracle AI techniques have been employed and these AI techniques have provided a significant 

initial effort towards realizing this dream. 

Availability of Data : Any model in AI must be trained and tested before being deployed in 

production. The ef- ficiency and effectiveness of a model are highly corre- lated to the amount of 

data with which a model is trained and tested. Acquiring data for building AI models in the domain 

of software testing is a challenging task because software testing unlike other fields of study is not 

fully automated yet.  Apparently, a lot of testing is still being carried manually and it is difficult to 

capture data when testing is manual.  This exhumes as a bottleneck to data acquisition for training 

AI models in the future. 

Adaptiveness to data :  AI models are highly depen- dant on the data with which they are 

trained and tested An important phase in the production of an AI model is the collection of robust 

datasets from real-world scenarios and the use of that data to train a model generalized to fit that 

data. Such a model assumes future data and historic data (data with which the model is trained) to 

be from the same distribution.  However, it is often not the case as most data has higher disparity 

over time e.g. learning customers shopping behaviour is dependant on seasons. AI models are 

evaluated for generalizations by testing the model on a particular subset from the data (test set) which 

is from the same time distribution. Over time less promis- ing outcomes from such models are 

witnessed. Some AI techniques allow the model to be readjusted to adapt to the changes in the new 

data. However, the challenging task is to detect this ideal time to readjust and even automate the 

readjustment process. 

Identifying Test Data : Every AI model must be tested horoughly before being put to production.  

Model test- ing is like a black-box technique where the structural or logical information regarding 

the model is not a necessity. Rather comprehensive information and understanding re- garding the 

testing data is required.  Again the selection of testing data from the same distribution can incur 

issues resulting in a biased model. The problem is with the cov- erage of the test set i:e asking the 

question ”Is the model tested over a larger distribution of data?” Identification of such coverage-

based test datasets is a challenging task in the domain of software testing. 

Exhaustive search space leads to generality loss : For most of the optimization problems in 

search-based soft- ware testing, the AI algorithm has to exhaustively search for the solution or the 

goal. Although sub-optimal search strategies have been identified and implemented so far they work 

for a particular class of problems. To include more general solutions to a variety of problems the 

inputs of the whole problem domain are to be included, consequently making the input space more 

exhaustive.  Versatile and broadly capable AI methodologies need to be identified to cope with this 

generality loss. 
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Exploitation of Multicore Computation : A lot of AI techniques are highly computationally 

expensive making them potentially incompatible with large-scale problems faced by software 

testers. With the recent advancements in computing infrastructure, Graphical Processing Units 

(GPU) and Tensor Processing Units (TPU) have been in- corporated at scale for these techniques. 

More work is re- quired to fully exploit the enormous potential of the rapidly increasing number of 

processors available.   Since such high computational devices are expensive more work needs to be 

carried out towards designing techniques that require less computation and still match the 

performance of high computing devices. 

5. Prospects of AI in Software Testing 
In the past few years, many companies have begun to invest in AI-powered software testing 

technologies. These AI systems offer an alternative to traditional testing pro- cesses. While AI 

systems are still relatively new, the po- tential gains are simply too great to ignore. Here are some 

excerpts from our study and from software testing indus- try experts where we expect these 

technologies to poten- tially help software testers in the future:• Collaborating with people who are 

geographically spread out can be difficult.  This is where AI sys- tems can be relied upon to carry 

out routine, labour- intensive tasks. This frees up more productive time for software testers to spend 

on addressing the most complicated issues. 

• Simulated testing - The ability to program AI sys- tems to test application code is incredibly 

useful. It offers a realistic simulation of a situation that a soft- ware tester might face. This also 

improves the accu- racy of tests because they can identify and replicate all possible scenarios. 

• The next generation of artificial intelligence in soft- ware testing will include self-modifying tools 

that can instantly identify and fix vulnerabilities without any human intervention creating self-

healing sys- tems. 

• With artificial intelligence in software testing, soft- ware companies, and testers can reduce their 

costs by a great degree, which is already happening. We think it will normal to see organizations 

and other user groups automate their testing process using AI while testers focus on the exploratory 

testing of sys- tems. 

• The AI predictive analytics will play a major role in discovering all possible test cases and will 

make the software products more robust, reliable and will exceed customer expectations. 

• AI is operating at all levels of testing from planning to execution to reporting and it is expected to 

take over all the tasks in the STLC which require human intelligence.  This in turn will free the 

tester from the job of various time-consuming testing strategies like regression testing and smoke 

testing etc. 

• AI incorporated in testing will provide a high ROI because these systems ensure that the time 

allocated to deliver the product is spent on polishing its fea- tures rather than on testing and 

debugging technical defects. 

• AI-pwered automation tools will help to increase the level of autonomy in software testing and 

hence help to deliver higher quality software. AI-related technologies are helping to bridge the 

gap between human and machine-driven testing capabilities. 

• AI is expected to impact testing in all the software product areas including mobile 

applications, web applications, IoT, embedded systems, database ap- plications, gaming 

industry, real-time applications, critical software applications to name a few. 

• With more data being acquired and stored, AI can enhance the software testing capabilities which 

are somewhat restricted today due to the non-availability of data. 

6. Conclusion 
 

In the last two decades, the rapid growth of interest in topics where AI has been applied to 

software testing is a testimony to the appetite the software testing community has for AI. This is a 

consequence of AI providing efficient solutions to the problems faced by the testing community for 
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a long time. AI has already been accepted as a promis- ing solution to many problems faced by 

testers all around the globe. In this paper, we studied the impact of AI across all stages of the STLC. 

We identified seven software test- ing activities that were most enhanced by AI techniques. GA’s, 

Reinforcement Learning, and ANN were among the most widely used techniques from the domain 

of AI. We identified problems and challenges researchers and testers face while applying AI 

techniques to software testing. We also provided a future prospect into how AI can shape the 

software testing domain. 

References 
[1]  C. Koch, “How the computer beat the Go master,” Scientific 

American, vol. 19, 2016. 

[2]  F.-H. Hsu, Behind Deep Blue: Building the Computer that De- feated the World Chess 

Champion. Princeton,  NJ: Princeton Univ. Press, 2004 

[3]  Brown, T. B. et al. Preprint at https://arxiv.org/abs/2005.14165 (2020). 

neering. In 1st International Workshop on Realizing Artificial Intelligence Synergies in Software 

Engineering (RAISE 2012), Zurich, Switzerland, 2012. protein-folding-ai-solved-biology-

science-drugs-disease/ 

[5]  M. Harman. The role of artificial intelligence in software engi-  

[6]  Hourani, H., Hammad, A., Lafi, M. (2019, April). The Impact of Artificial Intelligence on 

Software Testing. In 2019 IEEE Jor- dan International Joint Conference on Electrical 

Engineering and Information Technology (JEEIT) (pp. 565-570). IEEE. 

[7]  J. McCarthy, “Programs with common sense,” in Proceedings of the Symposium on 

Mechanisation of Thought Processes, vol. 1. London: Her Majesty’s Stationery Office, 1958, pp. 

77–84. 

[8]  Zou J.,  Han Y.,  So SS. (2008) Overview of Artificial Neu- ral Networks. In: Livingstone 

D.J. (eds) Artificial Neural Net- works.  Methods  in  Molecular Biology™, vol  458.  Humana 

Press. https://doi.org/10.1007/978-1-60327-101-12 

[9]  Newell, A., and Simon, H. A. 1963. GPS: A Program That Sim- ulates Human Thought. In 

Computers and Thought, eds. E. A. Feigenbaum and J. Feldman. New York: McGraw-Hill. 

[GPS] 

[10]  Jiao, Z.; Yao, P.; Zhang, J.; Wan, L.; Wang, X. Capability Con- struction of C4ISR Based on 

AI Planning. IEEE Access 2019, 7, 

31997–32008. 

[11]  James Hendler, Austin Tate, and Mark Drummond, “AI Plan- ning: Systems and Techniques,” 

AI Magazine Volume 11 Num- ber 2 (1990) 

[12]  Robin R Murphy, ”Introduction to AI Robotics Second Edition, 

” The MIT Press, Cambridge, Massachusetts, London England, 

2019. 

[13]  M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of 

Machine Learning. Cambridge, MA, USA: MIT Press, 2012. [14]  P. Louridas and C. Ebert, 

“Machine learning,” IEEE Softw., vol. 

33, no. 5, pp. 110–115, Sep./Oct. 2016. 

[15]  Pressman, R. S. ”Software engineering:  A practitioner’s ap- proach,” New York: McGraw-

Hill. 1987 

[16]  Ramler, R., & Wolfmaier, K, ”Economic perspectives in test au- tomation: balancing 

automated and manual testing with opportu- nity cost. In Proceedings of the 2006 international 

workshop on Automation of software test”, (pp. 85-91). ACM, 2006, May 

[17]  P. Ammann and J. Offutt, ”Introduction to Software Testing, 2nd ed,”. Cam- bridge, U.K.: 

Cambridge Univ. Press, 2016.997 

[18]  Vinicius H. S. Durelli , Rafael S. Durelli , Simone S. Borges, An- dre T. Endo, Marcelo M. Eler 

, Diego R. C. Dias , and Marcelo P. Guimaraes, ”Machine Learning Applied to Software Testing: 

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 416



A Systematic Mapping Study,”. IEEE TRANSACTIONS ON RE- LIABILITY. 2019. 

[19]  H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test cov- erage and adequacy,” ACM 

Comput. Surveys, vol. 29, no. 4, pp. 

366–427, 1997. 

[20]  INDI,2014. L. C. Briand, Y. Labiche, and Z. Bawar, “Using Ma- chine Learning to Refine 

Black-Box Test Specifications and Test Suites,” 2008 The Eighth International Conference on 

Quality Software, 2008. 

[21]  Mark  Last  and  Menahem  Friedman,  ”BLACK-BOX  TEST- ING WITH INFO-FUZZY 

NETWORKS,” Artificial Intelligence Methods in Software Testing, pp. 1-20 (2004) 

[22]  Last M., Kandel A. (2003) Automated Test Reduction Using an Info-Fuzzy Network. In: 

Khoshgoftaar T.M. (eds) Software Engineering with Computational Intelligence. The Springer 

In- ternational Series in Engineering and Computer Science, vol 

731. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0429-09 

 

Journal of Engineering Sciences Vol 15 Issue 02,2024

ISSN:0377-9254 jespublication.com Page 417


